CREATING GAUGES WITH EASYGAUGE, by Hector
Molina

Introduction

My first experience with MS Flight Simulator was with the 98 version. Soon, my
children discovered some of the specialized web sites that publish third party’s
aircrafts, sceneries, panels and gauges. Then | realized the large world of new
opportunities to interact with the game.

| got myself a utility software that allows to graphically edit the panel.cfg file and
soon | was creating my own panels using third party’s gauges and publishing
them at specialized sites. Problems began soon thereafter, when | started to
receive emails from the authors complaining because | was using their gauges
without authorization. | immediately removed my panels from the sites and got a
very frustrating feeling because | was not able to create my own gauges.
Needless to say that | am a complete ignorant with regards to C or C++
programming.

By a coincidence | ran into a gauge that made reference to a software called
EasyGauge. After doing some research | finally discovered this wonderful
software that allows you to create gauges without any programming knowledge.

Most likely the great majority of you uses a word processor or an electronic
spreadsheet almost every day. Those utilities are nothing but graphical interfaces
that allow a normal user to edit text or make complicated calculations without
having to get into program languages. Well, two smart Germans, Marcel and
Steffen Burr, created what today may seem obvious: a graphic interface to
program gauges for FS without having to get into programming language itself.

And that is exactly what EasyGauge (EG) is: a friendly software that allows
programmers ignorants like myself to create gauges for FS. Of course, the
software has some restrictions and very sophisticated gauges cannot be created
with EashGauge, but the great majority of the gauges that you would normally
use in a panel can be created with this software.

The purpose of this tutorial is to help the software beginners understand some of
the principles involved in designing gauges with EG.

To follow this tutorial you must have EG version 2.0 (or later) installed in your
computer as well as FS 2002 or 2004. You may acquire EG at
www.easygauge.net. Also, to better understand this tutorial you should have read
thoroughly the EG manual first in order for you to be familiar with its functions
and commands.

THE FS AMBIENT

You may consider FS as an ambient which broadcasts variables (Token
variables) at high rates (nearly 100 per second). Examples of such token
variables are: altitude, airspeed, radio frequencies, engine information (N1, N2,
ITT, oil pressure, oil temperature, fuel), bearings, headings, cruises, etc.

Gauges will normally “read” one or more of those variables an react to them (i.ex.
a needle will move as a reaction to the airspeed variable) displaying the result of
that “reading”. You can also interact with the FS ambient through the use of
Events, which send commands to your aircraft. Examples of Events are: throttle
increase and decrease, flaps extension and retraction, radio frequency setting,
pitch increase and decrease, landing gear up and down, etc.

The FS ambient depends on the aircraft design, therefore it may vary according
to the code established in both the aircraft.cfg and the .air files. The first one
defines the type of engine (jet, turbo prop, reciprocate engine), available
frequencies, autopilot characteristics, aircraft identification, etc. The .air file
defines the aircraft dynamics. Both files may limit the variables available within
the FS ambient. For instance, if the aircraft.cfg defines that the flaps will have 3
positions available, it would be useless if you try to create a gauge with more flap
positions.

Take this in mind when you design a gauge, particularly because most of the
time the aircraft designer is not the same person that designs panels and
gauges.

CREATING GAUGES

This chapter will show you how to create one of the most complex gauges of a
panel, the Primary Flight Display (PFD), and will use my Boeing 737-800 panel
as an example. The reason for choosing this gauge is because it contains all the
elements you can use to create gauges: static, sprites, movings, needles, sliders
and strings. Should you like to see the panel as you read this tutorial you may
download it from either flightsim.com or simviation.com. The name of the file is
b7378pn2.zip.

From experience | found out that the best way to begin any gauge is to first
design a bitmap showing how the gauge will finally look and then use portions of
that bitmap to create the different elements.

Our PFD will finally look as follows:

(0,0

adoon

Center of rotation of the
Attitude Indicator.
Coordinates (100,108)

+ Center of rotation of the HSI. Coordinates (99,261)

The Static

| prefer to use a transparent bitmap (RGB color 0,0,0) for the static
because this allows you to increase its size when you place it on the
panel, without hiding adjacent areas. Moreover, the center of rotation of
the HSI is bellow the bottom of the gauge, therefore the static has to be
high enough to contain that point, and it has to be transparent in order not
cover any part of the panel. Remember, color (0,0,0) will always be
displayed transparent. So our static is a 225 x 263 pixel transparent
bitmap.

Coordinate (0,0)

Only this portion of the gauge will
be shown on the panel

The attitude indicator

This indicator moves vertically and it also turns, therefore we need to use a sprite
element. We need two bitmaps for this element: the sprite itself and the mask, as
follows:

Coordinate (0,0)

Turning point: coordinate (100,108)

158 x 171 pixel bitmap
335 x 335 pixel bitmap

The portion of the mask that will show the sprite has to be RGB (1,1,1). The
image below shows the mask with the display area painted on yellow, just to
show its shape. The rest of the area is transparent (0,0,0)

Tips for sprites

a) Sprites are to be perfectly square and should have an odd number of pixels,
thus you will make sure that there is a turning point positioned exactly in the
center of the image. For instance, the image bellow is 7 x 7 pixel (the first pixel is
always 0):

This pixel is exactly in the
l center of the image

OO wWNE O

012 3456

If you use an even number of pixels you won'’t have a perfectly centered turning
point. Although for rather large sprites this may not be noticed, for small images
you may get an eccentric turning effect.

b) The mask does not have to be the same size of the static but it has to be large
enough to cover the area of the visible portion of the sprite, always measured
from the top left corner of the static. Remember, the smaller the bitmaps of your
gauges the better the frame rates you get with your panel.

c) The size of the sprite has to be large enough to allow it to perform the
maximum displacement in every direction and still be visible through the mask. In
our case | used a 335 x 335 pixel image for the sprite, thus it will be shown even
at a 40° or a 50° pitch.

Setting

As per the EG manual, the setting coordinates of the sprite are the coordinates of
the point of the static around which the sprite will rotate, always measured from
the top left corner of the static, whose coordinates are always (0,0).

In our example the general setting for the attitude sprite will be (100,108)

Token variables

For the vertical displacement we use:
ATTITUDE_INDICATOR_PITCH_DEGREES

For the turning movement we use:
ATTITUDE_INDICATOR_BANK DEGREES

Scale

Before defining the scale it's better to create the sprite element and then select it
again for editing, thus allowing the element to be displayed in the working
window of EG. By doing this it's easier to graphically define the maximum and
minimum values of Y and O.

The ATTITUDE_INDICATOR_PITCH_DEGREES returns positive numbers when
pitching up and negative numbers when pitching down. You have to define how
far the sprite will vertically move when pitching up or down. Let’s assume that the
maximum pitch up and down will be 40° and —40°, respectively. Then, on the field
for minimum Y we introduce 40 and we click on the change button of the left field
and then click on the upper portion of the image to define the point where the
sprite will move when pitch is 40° up. To do so, we use the sprite degrees scale
as a reference and even though 40° is not drawn in the scale just click on a point
that is approximately 40° above the horizon. Repeat the same procedure for the

down pitch. Introduce —40 for Maximum Y, click over the change field and click
over the image approximately 40° below the horizon.

All this procedure only sets the movement scale of the pitch but it will not prevent
the sprite from moving beyond the two limits that you have just selected. If you
wish to limit the sprite movement, then you have to do so in the function section.
Introduce the following code:

IF ValueReturn Y>40 THEN ValueReturn Y=40

IF ValueReturn Y<-40 THEN ValueReturn Y=-40

The code above will limit the sprite movement to a maximum of 40° up and —40°
down.

Finally add the following code:

IF BATTERY_VOLTAGE < 24 THEN ValueReturn O= 0. The reason for this is
that when the battery starts to run out of power, the bank variable returns
negative numbers. Even though this may be valid for a backup attitude indicator,
the PFD is an electronic instrument and therefore if the battery has low power the
value shown should be zero (no bank at all).

Now let’s create the HSI. We need the following sprite bitmaps:

LRI
ARy,
o e

F S
¥

‘o
&

Rose: 155 x155 pixels CRS: 155 x 155 pixels HDG: 175 x 175 pixels

Notice that the HDG bitmap is 20 pixels larger than the others. This is because
the heading bug has to rotate over the rose circle.

For each sprite bitmap we need a mask bitmap. As described for the attitude
indicator, the HSI masks have to be large enough to display the portion of the
sprite we want to show in the gauge.

Rose mask CRS mask HDG mask
177 x 232 pixels 177 x 232 pixels 177 x 232 pixels

Again, | painted with yellow the area that should be RGB (1,1,1,) just to show its
shape. All the rest is transparent (0,0,0)

Notice that the masks DO NOT need to contain the rotation point of the sprites,
therefore they are smaller than 262 pixels (the vertical coordinate of the rotation
point). Thus, you may use smaller bitmaps and save frame rates. Generally
speaking, masks are to be just large enough to contain the area through which
you want the sprite to be displayed.

Settings

The settings for the three sprites above are (99,261), which are the coordinates
of the point around which the sprites will turn, always measured from the top left
corner of the image.

Variables for the HSI

For the rose: in the “display variables” section maintain the X-axis and the y-axis
as MODULE_VAR_NONE, since they will not affect the Rose. For the 0-axis,
select PLANE_HEADING_DEGREES_MAGNETIC.

In the Scale section enter Scale of turn 1

For the CRS: go to the Function section and enter the following code:
ValueReturn 0 = HSI_OBI_NEEDLE + 360 —
PLANE_HEADING_DEGREES_MAGNETIC

In the Scale section enter Scale of turn -1

For the HDG: go to the Function section and enter the following code:
ValueReturn 0 = AUTOPILOT_HEADING_LOCK_DIR + 360 -
PLANE_HEADING_DEGREES_MAGNETIC

In the Scale section enter Scale of turn -1
The Bank Arrow

We need the following bitmap for this needle:

I r‘ 53 x 14 pixels image
~ Turning point. Coordinates (1,7)

The background of the image is RGB (0,0,0) because we only want to arrow the
be displayed.

The settings are the same as for the Attitude indicator, since the bank arrow will
turn around the same point. Coordinates (100,108). We want this needle to move
from —60° to 60° .

In the function section enter the following code:

ValueReturn = ATTITUDE_INDICATOR_BANK_DEGREES + 60

When dealing with arrows | have had less problems working always with positive
values. Therefore, the above code forces to return values from 0 to 120, instead
of negative numbers when banking to the left.

In addition, introduce the following code:

IF ValueReturn <O THEN ValueReturn =0

IF ValueReturn > 120 THEN ValueReturn = 120

This will limit the arrow displacement between 0 and 120 (-60° and 60°)

Finally, and for the same reason explained for the attitude indicator, enter the last
code:

IF BATTERY_VOLTAGE<24 THEN ValueReturn = 60

In the Nonlinearity Table section select the points for the zero position (-60°) and
the 120 position (60°).

In the Points on picture section select 1,7 for the turning point of the arrow.

The Flight Director Bars

For these elements we need the following bitmaps:

T —, Horizontal bar: 65 x 3 pixels

Vertical bar 3 x 65 pixels

Since these elements will displace in just one direction, either horizontally or
vertically, we use the slider element.

Settings for the vertical bar: 100,76
Settings for the horizontal bar: 68,107

For the horizontal bar enter the following code in the function section:

ValueReturn Y = FLIGHT_DIRECTOR_PITCH -
ATTITUDE_INDICATOR_PITCH_DEGREES

| normally limit the bar displacement to 15°, therefore | would introduce the
following code:

IF ValueReturn Y < -15 THEN ValueReturn Y = -15

IF ValueReturn Y > 15 THEN ValueReturny = 15

For the vertical bar enter the following code in the function section:
ValueReturn X = FLIGHT_DIRECTOR_BANK —
ATTITUDE_INDICATOR_BANK_DEGREES

| normally limit the bar displacement to 30°, therefore | would introduce the
following code:

IF ValueReturn X < -30 THEN ValueReturn X = -30
IF ValueReturn X > 30 THEN ValueReturn X =30

The Vertical Speed Needle
For this element we need the following bitmaps:

21 x 11 pixels background

56 x 5 pixels arrow

The yellow color should in fact
be (0,0,0). It is yellow just to
show its shape.

The rest is black (3,3,3)

28 x 177 pixels cover

The background could in fact be drawn directly onto the static image. However, |
like to introduce the function Light Image to all my gauges in order to
automatically illuminate at night, and since the static cannot receive that function,
| create the background as an Icon. In this case the settings for this icon are:
204,54

The settings for the arrow are: 224,129

| use VERTICAL_VELOCITY to drive this arrow. Since that Token variable
returns the value in feet/second and we want it feet/minute, we have to multiply it
by 60. Also the value return may vary between —6000 and 6000 feet/minute,
whether the plane is pitching down or up. Since | prefer to work with positives
values when dealing with needles, then | introduce the following code in the
Function section:

ValueReturn = VERTICAL_VELOCITY * 60 + 6000

IF ValueReturn < 0 THEN ValueReturn = 0

IF ValueReturn > 12000 THEN ValueReturn = 12000

The code above will limit the arrow displacement within a range of —6000 and
6000 feet/minute.

The purpose of the cover is to hide the arrow from all the areas that are out of the
blue area of the background, thus adding a “stretching” effect to the arrow as it
moves up and down. We use the Icon element for this cover with the following
settings: 196,0. This element MUST be placed after the needle in order to make
sure that the arrow is displaced only through the desired area.

The Glide Slope
For this element we need the following bitmaps:
r4
7 x 100 pixel background Il | 7 x 11 pixel slider

RGB (0,0,0)

The settings for the background icon are: 157, 59

We want this image to be displayed only when the VORL flag is available;
therefore, in the function section we introduce the following code:

If VOR1_GS FLAG =1 THEN Show Element else Hide Element

For the arrow we use the slider element:
The settings are: 158,103

In the Display variables section we use the following variable for the Y-axis:
VOR1_GS_NEEDLE

The same as with the background we only want it to be displayed when the flag
is available, therefore in the Function section we introduce the same code:

If VOR1_GS FLAG =1 THEN Show Element else Hide Element
The Main Altimeter

To create this indicator we use a moving and we need the following bitmaps:

44 x 152 pixel bitmap
The yellow color in fact
should be RGB (1,1,1)

- The black color is (0,0,0)

44 pixel wide moving

The height will depend on the
Maximum altitude you want to
display. In this case is 45,000 feet.

This color is (0,0,0)

Even though the EG manual shows how to create an altimeter based on a
moving, | decided to include it this tutorial in order to give you a couple of tips on
how to define the maximum and minimum values. The reason for this is because
| have seen in the EG forum several threads of users that have problems with the
correct values displayed by this element.

But first, let's create the element. The settings are: 167,33

In the Display variables section choose
ALT_FROM_BAROMETRIC_PRESSURE as your y-axis variable.

To define where to start and to finish the altitude scale in the moving, use your
drawing software, Paint Shop Pro for instance, and first create a 44 pixel wide
bitmap with a height of around 2000 pixels, just to begin with. In order to define
where to draw the 000 altitude, copy part of the mask image and paste it over the
very bottom of the moving image as follows:

Then, start drawing your scale upwards beginning from 000 as shown in the
figure. Thus, you will make sure than when the Value return is zero, the moving
will be placed at the bottom of the mask. After you define the zero point erase the
portion of the mask you used for reference.

When you finish drawing the scale to the maximum altitude, repeat the same
procedure as follows:

Remove from the moving image everything
that is above the top border of the mask.

Place a copy of part of the mask onto the moving image adjusting the moving in
order that the arrow coincides with the maximum altitude you want to be
displayed (in this case, 45,000 feet). Then remove from the moving image the
portion above the top border of the mask. Thus, you will make sure that when the
altimeter shows the maximum value you want to be displayed (in this case 45000
feet), the top of the moving image coincides with the top of the mask. After this
procedure, erase the portion of mask you used as reference and finish drawing
the scale until the top of the moving image.

Now, getting back to the moving element in EG, go to the Scale section and
define the Value of the top border as 45000 and then the Value of the bottom
border as 0. Thus, your scale will move precisely between those two limits and
will accurately show the altitude returned by the FS token variable.

All the procedure above is valid for the other 4 altimeters. You will need the
following images for each of them:

Tens mask
14 x 21 pixels I 100s mask 9 I 1000s and 10000s
7 X 21pixels 8 mask
7 8 x 21 pixels
Tens moving 6
14 x 140 pixels .
100s moving 5
7 x 201 pixels 4
1000s and 10000s
moving
8 x 202 pixels

[

The settings for each moving are:
For the tens: 196,99
For the 100s: 191,99
For the 1000s: 184,99
For the 10000s: 176,99

For all these movings select ALT_FROM_BAROMETRIC_PRESSURE as the
variable to drive the Y-axis, in the Display variables section. However, in the
function section, you have to introduce the following code in order to make sure
that you get the right value returns:

For the tens:
ValueReturn Y = ValueReturn Y % 100 (if the variable returns 36250 feet, for
instance, you only want to have the 50 feet portion displayed by this element)

For the 100s:

ValueReturn Y = (ValueReturn Y — ValueReturn Y % 100)/100

ValueReturn Y = ValueReturn Y % 10 (if the variable returns 36250 feet, for
instance, you only want to have the 2 digit displayed by this element)

For the 1000s:

ValueReturn Y = (ValueReturn Y — ValueReturn Y % 1000)/1000
ValueReturn Y = ValueReturn Y % 10 (if the variable returns 36250 feet, for
instance, you only want to have the 6 digit displayed by this element)

For the 10000s:

ValueReturn Y = (ValueReturn Y — ValueReturn Y % 10000)/10000 (if the
variable returns 36250 feet, for instance, you only want to have the 3 digit
displayed by this element)

The Scale values for all 4 altimeters above are: Value of the top border = 9 and
Value of the bottom border = 0

The Indicated Air Speed (IAS)

For this element we need the following bitmaps:

32 pixel wide 32 x 152 pixel mask.
moving. The height The yellow color

will depend on the should in fact be
maximum height you i (1,1,2)

want to display.

The settings for this element are: 1,32

In the Display variables section select AIRSPEED for the variable driving the y-
axis.

Use the same procedure explained for the altimeter to define where to start
drawing the 000 speed scale and where to cut the top portion of the image.
Thereafter go to the Scale section and define 0 as the Value of the bottom border
and define your maximum displayed speed as the Value of the top border.

The Secondary IAS

For these elements we need the following bitmaps:

| I 8 x 21 pixels - 8 x 21 pixels ? 8 x 21 pixels
g mask (1,1,1) a mask (1,1,1) 8 mask (1,1,1)
1 T 7
] b 6
9 5 5
g 8 x 140 pixels ¢ 8x201 pixels ¢ g x 201 pixels
[l moving » moving % moving
1 1
0 0

The settings for these elements are:

Units: 19,98
Tens: 11,98
Hundreds: 3,98

For all three movings select AIRSPEED as the variable that will drive the Y-axis
For the ‘units’ moving, in the function section, introduce the following code:

ValueReturn Y = ValueReturn Y % 10 (if, for example, the variable returns a
value of 256 knots, you want this moving to show only the 6 digit)

For the ‘tens’ moving, in the function section, introduce the following code:
ValueReturn Y = (ValueReturn Y — ValueReturn Y % 10)/10

ValueReturn Y = ValueReturn Y % 10 (if, for example, the variable returns a
value of 256 knots, you want this moving to show only the 5 digit)

For the *hundreds’ moving, in the function section, introduce the following code:

ValueReturn Y = (ValueReturn Y — ValueReturn Y % 100)/100 (if, for example,
the variable returns a value of 256 knots, you want this moving to show only the
2 digit)

The Speed Bug
For this element we use a slider and the following bitmap:
F .

= | 13 x 8 pixels

The settings for this element are: 26,104 (this coordinates will place the slider
exactly in the middle of the speed mask)

In the function section introduce the following code:

ValueReturn = AUTOPILOT_AIR_SPEED_ HOLD_ VAR - AIRSPEED

If AUTOPILOT_AIRSPEED HOLD =1 Show element else Hide element

If ValueReturn > 70 then ValueReturn = 70

If ValueReturn < -70 then ValueReturn = -70

The last two codes will limit the slide displacement to values between 70 and —
70. These values correspond to half the displayed speed scale and consequently
half the height of the speed mask.

Attention: if we leave the speed bug slider just like explained above it will move
over the secondary speed indicator. We don’t want that because it will not look
nice and will not correspond to reality. Therefore, we have to add and icon to
cover the passage of the slider over the secondary speed indicator. To do this we
need to place an icon with the following bimap:

.| 28 x 23 pixels
I

The settings of this icon are: 3,97

The three movings of the secondary speed indicator have to be created AFTER
the creation of the icon above otherwise the icon will cover the movings. If you
have already created the movings, just push them down the “list of existing
elements” of EG by using the down bottom.

The Altitude Bug

For this bug we also use a slider with the following bitmap:

k’l 16 x 19 pixels

The settings for this element are: 164,101
In the Function section introduce the following code:

ValueReturn = AUTOPILOT_ALTITUDE_LOCK_VAR -
ALT_FROM_BAROMETRIC_PRESSURE

If AUTOPILOT_ALTITUDE_LOCK = 1 then Show element else Hide element
If ValueReturn > 450 then ValueReturn = 450 (this is half the value of the
displayed altitude scale)

If ValueReturn < -450 then ValueReturn = -450

The last two statements limit the slider displacement within the top and the
bottom of the altitude mask.

The same as with the speed bug, we have to add an icon in order to avoid the
bug to pass over the altitude indicator. For this we need the following bitmap:

Il 18 x 23 pixels
I

The settings for this icon are: 171,98
The Secondary Altitude Indicator

For this element we need the following bitmaps:

00 . 14 x 21 pixel g I 7 x 21 pixel 9 I Two 8 x 21 pixel
90 mask 8 mask 8 masks, one for the
7 7 1000s and one for
6 the 10000s
b
3 9
Il .
14 x140 pixel 7 x 201 pixel :
moving for the ¥ moving for the 3 Two_8 x 202 pixel
tens 7 100s § movings, one for the
. 1000s and one for
| the 10000s
: 0

The settings for each moving are:

For the 10s: 196,99
For the 100s: 191,99
For the 1000s: 184,99
For the 10000s: 176,99

In the Display variables section select ALT_FROM_BAROMETRIC_PRESSURE
as the variable that will drive the Y-axis for the four movings above.

In the Function section, introduce the following code:

For the 10s:
ValueReturn Y = ValueReturn Y % 100 (if the variable returns an altitude of
35670 feet, for instance, you want this moving to show only the 70 portion)

For the 100s:

ValueReturn Y = (ValueReturn Y — ValueReturn Y % 100)/100
ValueReturn Y = ValueReturn Y % 10

(if the variable returns an altitude of 35670 feet, for instance, you want this
moving to show only the 6 digit)

For the 1000s:

ValueReturn Y =(ValueReturn Y — ValueReturn Y % 1000)/1000
ValueReturn Y = ValuReturn Y % 10

(if the variable returns an altitude of 35670 feet, for instance, you want this
moving to show only the 5 digit)

For the 10000s:

ValueReturn Y = (ValueReturn Y — ValueReturn Y % 10000)/10000

(if the variable returns an altitude of 35670 feet, for instance, you want this
moving to show only the 3 digit)

The Top Indicator Separator

For this element we use an icon with the following bitmap:

m 56 x 24 pixels

Again, this element could be drawn directly onto the static. However, if you want
to use the “light image” function, you must use an icon.

The settings for this element are: 74,1

| will not get into specific explanation for the strings since they are pretty obvious
to create. One hint, though, with regards to the STD string over the Kohlsman
indicator:

The STD should be displayed only when the Kohlsman is set to 29.92 inches.
However, if you just introduce this statement as above, the string will never be
displayed since FS uses several decimals. In order to make sure that the string
with the word STD is displayed correctly at 29.92 inches, do the following:

In the Main Function section create a variable with any nhame you want; for this
example, let’s call it ‘baro’. This variable has to be a floating number since it will
have several decimals. Then, create the string with the word STD and in the
function section introduce the following code:

If baro > 29.915 and baro < 29.925 then Show element else Hide element
In the Main Function section introduce the following code in the Always field:
baro = KOHLSMAN_SETTING_HG

0O.K. All you have to do now is to add the other strings and your PFD will be
ready.

